Получение ферментов витаминов антибиотиков с помощью микроорганизмов

24.09.2018 0 Автор Vrach

Антибиотики – специфические продукты жизнедеятельности организмов или их модификации, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов или к злокачественным опухолям, задерживая их рост или полностью подавляя их развитие. К антибиотикам относятся низкомолекулярные эффекторы изначально природного происхождения, способные подавлять рост живых клеток.

Антибиотики возникли в борьбе за существование почвенных биоценозов, поэтому многие из них служат средствами нападения и защиты, т.е. представляют собой своеобразное химическое «оружие» клетки. Однако эти функции у антибиотиков не единственны. Известно, что они могут участвовать в процессах детоксикации вредных метаболитов, контролировать некоторые стороны обмена веществ и целые процессы развития, например, дифференцировку клеток, служить запасными питательными веществами. В процессе образования антибиотиков задействовано значительное число генов. Массовая расшифровка первичной структуры геномов микроорганизмов показала, что эта величина равна 1 – 2 %. Так, у Bacillus subtilis число таких генов достигает 2 %, что обеспечивает микроорганизму большие возможности для защиты и адаптации. С другой стороны, это обстоятельство затрудняет анализ путей биосинтеза антибиотиков и идентификацию отдельных мутаций, способных увеличить выход продукта.

Способность нитчатого гриба зеленой плесени Penicillium notatum вызывать гибель микроорганизмов впервые была установлена в 1928 г. английским микробиологом А. Флеммингом. Однако лечебные свойства этой плесени были описаны еще в 1871 г. русским дерматологом А. Г. Полотебновым. Открытие антибиотиков произвело переворот в лечении инфекционных заболеваний. Ушли в прошлое представления о неизлечимости многих бактериальных инфекций (туберкулез, сепсис, сифилис и др.). Антибиотики применяют в ряде отраслей народного хозяйства (растениеводство, животноводство, ветеринария, пищевая промышленность и др.), где они используются более широко, чем в медицине, например, для лечения сельскохозяйственных животных, борьбы с фитопатогенными микроорганизмами, а также для увеличения биомассы животных (биомицин – производное тетрациклина). Антибиотики широко используют в качестве молекулярных инструментов при исследовании фундаментальных проблем биологии, таких, как расшифровка механизмов биосинтеза белка, нуклеиновых кислот и структуры клеточных стенок бактерий, создание моделей транспорта ионов через биологические мембраны и др.

Количество открываемых антибиотиков постоянно растет. В 1940 г. было известно всего 6 антибиотиков, а в настоящее время описано более 12 000 аналогичных соединений, из которых в клинике применяют около 200 препаратов. 97 % известных антибиотиков токсичны, поэтому в практике не используются.

Изыскание новых форм антибиотиков обусловлено как потребностями практики, так и накоплением резистентных форм микроорганизмов по отношению ко многим антибиотикам. Устойчивость бактерий к пенициллинам и цефалоспоринам создает присутствующий в их клетках энзим лактамаза (пенициллиназа). Фермент гидролизует амидную связь β-лактамного цикла в молекуле антибиотика с образованием пенициллиновой кислоты, которая пол­ностью лишена антимикробной активности:

получение ферментов витаминов антибиотиков с помощью микроорганизмов

Пенициллин Пенициллиновая кислота

Резистентность микроорганизмов к антибиотикам обеспечивается разнообразием фенотипов резистентности и разнообразием и стабильностью систем горизонтального генного транспорта. Поэтому главное направление получения новых антибиотиков состоит не в открытии новых соединений, а в химической трансформации природных молекул для создания полусинтетических антибиотиков, характеризующихся значительно меньшей резистентностью и токсичностью, но более широким спектром действия, большим временем жизни, химической и биологической устойчивостью. Важный подход на пути получения устойчивых аналогов антибиотиков – использование природных ингибиторов β-лактамаз – клавулановой и оливановой кислот.

Классификация антибиотиков. По типу действия антибиотики делят на бактерицидные (лактамные, аминогликозиды), вызывающие гибель микроорганизмов, и бактериостатические (макролиды, тетрациклины, левомицетин), нарушающие способность микроорганизмов делиться.

По спектру действия различают антибиотики узкого и широкого действия. К последним относят тетрациклины, макролиды, аминогликозиды, которые особенно полезны в случае неидентифицированных возбудителей болезни, однако при длительном применении они вызывают у пациентов дисбактериоз.

Особенность молекулярного механизма действия антибиотиков – исключительная специфичность их действия. Специфика действия их состоит в избирательном подавлении этими эффекторами одного или нескольких процессов у некоторых микроорганизмов. Таким образом, антибиотики блокируют метаболические мишени в клетках-мишенях.

В зависимости от специфики действия антибиотиков на молекулярном уровне различают следующие группы соединений:

1. антибиотики, ингибирующие синтез клеточной стенки (пенициллины, ванкомицин, цефалоспорины, D-циклосерин);

2. антибиотики, нарушающие функции мембран (альбомицин, аскозин, грамицидины, кандицидины, нистатин, трихомицин, эндомицин и др.);

3. антибиотики, избирательно подавляющие синтез (обмен) нуклеиновых кислот:

а) РНК (актиномицин, гризеофульвин, канамицин, неомнцин, новобиоцин, оливомицин и др.);

б) ДНК (актидион, митомицины, новобиоцин, саркомицин и др.);

4. антибиотики – ингибиторы синтеза пуринов и пиримидинов (азасерин, саркомицин и др.);

5.антибиотики, подавляющие синтез белка (канамицин, метимицин, неомицин, тетрациклины, хлорамфеникол, эритромицин и др.);

6. антибиотики – ингибиторы дыхания (олигомицины, пиоцианин, усниновая кислота и др.);

7. антибиотики – ингибиторы окислительного фосфорилирования (валиномицин, грамицидины, колицины, олигомицин, тироцидин и др.);

8. антибиотики, обладающие антиметаболитными свойствами, т.е. выступают в качестве антиметаболитов аминокислот, витаминов, нуклеиновых кислот (фураномицин – антиметаболит лейцина);

9. антибиотики-иммуномодуляторы (актиномицины С и D, оливомицин, рубомицин).

В зависимости от химической природы и ряда других свойств известные антибиотики делят на следующие классы:

· β-Лактамные составляют более 50 % рынка антибиотиков и относятся к азотсодержащим гетероциклическим соединениям. В эту группу входит большое число антибиотиков, молекулы которых содержат разнообразные, часто очень сложные кольчатые системы (рис 8.4). Характерная особенность строения β-Лактамных антибиотиков – наличие в молекуле β-лактамного кольца (пенициллины, цефалоспорины):

Рис.8.4.Структура пенициллина. Ядро молекулы – 6-аминопенициллановая кислота (6-АПК) – гетероциклическое соединение, состоящее из 4-членного β-лактамного (А) и 5-членного тиазолидинового (В) колец.

· Тетрациклины входят в группугетероциклических соединений(рис.8.5.) и обладают широким спектром действия (тетрациклин, морфоциклин, метациклин).

получение ферментов витаминов антибиотиков с помощью микроорганизмов

Рис.8.5.Структура тетрациклинов. Тетрациклин: R1 = H; R2 = H; Хлортетрациклин: R1 = H; R2 = Cl;Окситетрациклин: R1 = OH; R2 = H.

· Макролиды. Характерная особенность антибиотиков этой группы –

Рис.8.6. Структура эритромицина присутствие в молекуле макроциклическою лактонного кольца, связанного с одним или несколькими углеводными остатками (рис. 8.6). К антибнотнкам-макролидам относятся метимицин, эритромицин, магнамицин, олеандомицин и др.    

· Аминогликозиды – группа антибиотиков, общим в химическом строении которых является наличие в молекуле аминосахара, соединённого гликозидной связью с аминоциклическим кольцом (рис 8.7).

Рис.8.7. Структура стрептомицина А Основное клиническое значение аминогликозидов заключается в их активности в отношении аэробных грамотрицательных бактерий К ним принадлежат стрептомицины, канамицины неомицины, гентамицин, тобрамицин, нетилмицин, сизомицин, амикацин.

· Антибиотики-полипептиды.Среди изученных в химическом отношении антибиотиков этой группы наиболее распространены циклопептиды, состоящие из остатков Lи D-аминокислот. К ним относятся антибиотики, образуемые бактериями (тироцидины, грамицидины, бацитрацины, полимиксины, низины, бацилломицины и др.) и актиномицетами (этамицин, эхиномицины и др.)

· Амфениколы. Соединения, относящиеся к этой группе, являются производными бензола (рис.8.8). К ним относятся галловая кислота, хлорамфеникол, левомицетин и др.

· Антибиотики-олигомицины.К. этой группе относятся соединения,

Рис.8.9. Частичная структура олигомицинов содержащие в молекуле сопряженную диеновую систему. По химическому строению эти соединения относятся к макролактонам (рис.8.9). В качестве примера можно назвать олигомицины А, В и С, ботримицин и др.

· Полиеновые антибиотики, характерная особенность которых – наличие системы, содержащей от трех до восьми сопряженных двойных связей, —(СН=СН)— (рис.8.10). Многие антибиотики этой группы содержат аминосахар (микозамин, перозамин), отдельные вещества в структуре имеют вторую азотсодержащую часть – ароматические кетоны. К числу полиеновых антибиотиков относится большое число (более 150) веществ (микротриен, ареномицин, нистатин, фумагиллин, леворин).

Рис.8.10. Структура нистатина

· Антибиотики-хиноны.В группу входят бензохиноны (рапанон, фумигатин и др.), нафтохиноны (плюмбагин, яваницин и др.) и антрахиноны (эндокроцин и др.).К группе антибиотиков-хинонов относятся антрациклины, насчитывающие около 70 наименований. Многие из этих антибиотиков, образуемых стрептомицетами, обладают протиобактериальной активностью, а часть из них и противоопухолевым действием. К последним относятся дауномицин, адриамицин (доксорубицин) и кармипомнцик (рис. 8.11).

· Антибиотики-депсипептиды.Характерная особенность этих антибиотиков (валиномицин, амидомицин и др.) состоит в том, что они построены из остатков α-окси- и α-аминокислот, соединенных между собой сложноэфирными и амидными связями (рис 8.12).

Рис.8.12. Структура амидомицина

В зависимости от биологического происхождения антибиотики подразделяют на:

· антибиотики, вырабатываемые микроорганизмами, относящимися к эубактериям:пиоцианин – Pseudomonas aeruginosa, вискозин – Ps. viscose, дипломицин, низин – Lactococcus lactis, продигиозин – Serratia marcescens, колиформин – Escherichia coli, протаптины – Proteus vulgaris, грамицидины – Bacillus brevis, субтилин – В. subtilis, полимиксины – В. polymyxa;

· антибиотики, образуемые микроорганизмами, принадлежащими к порядку Actinomycetales:

а) образуемые представителями рода Streptomyces:стрептомицин – S. griseus,тетрациклины – S. aureofaciens, Str. rimosus, новобиоцин – S. spheroides, эритромицин – Saccharopolyspora erythraea,актиномицины – S. antibioticus и др.;

б) образуемые представителями рода Nocardia: рифамицины – N. mediterranei, ристомицин – N.fructiferi и др.;

в) образуемые родом Actinomadura:карминомицин – A. carminata и др.;

г) продуцируемые родом Micromonospora: фортимицины – М. olivoasterospora,гентамицины – М. риrриrеа;

· антибиотики, образуемые цианобактериями: малинголид – Lyngbya majuscula;

· антибиотики, образуемые несовершенными грибами: пенициллин – Penicillium chrysogenum, гризеофульвин – P. griseofulvum, трихотецин – Trichotecium roseum;

· антибиотики, образуемые грибами, относящимися к классам базидиомицетов и аскомицетов: термофиллин – базидиомицет Lenzites thermophila, лензитин – Lenzites sepiaria, хетомин – Chaetomium cochloides (аскомицет);

· антибиотики, образуемые лишайниками, водорослями и низшими растениями: усниновая кислота (бинан) – лишайником Usneaflorida, хлореллин – водорослью Chlorella vulgaris;

· антибиотики, образуемые высшими растениями: аллицин – Allium sativum, рафанин – Raphanus sativum, сативин – чеснок, томатин – томаты, алин – лук, фитоалексины: пизатин в горохе (Pisum sativus), фазеолин в фасоли (Phaseolus vulgaris);

· антибиотики животного происхождения: лизоцим, экмолин, круцининтерферон.

Методы получение антибиотиков. Методы получения антибиотиков путем химического синтеза чрезвычайно сложны и не могут конкурировать с их биосинтезом методами биотехнологии.

Существует несколько способов получения как природных, так и полусинтетических антибиотиков:

· Направленный биосинтез антибиотиков осуществляемый путем прямой ферментации микроорганизма продуцента с подходящим предшественником, что индуцирует синтез ферментов вторичного метаболизма в идиофазе. Например, производство бензилпенициллина в значительной степени стимулируется добавками его метаболического предшественника – фенилуксусной кислоты; пропионовая кислота и пропиловый спирт инициируют биосинтез макролидов через метилмалонилКоА; L-фенилаланин – ускоряет образование грамицидина S.

· Использование ингибиторов метаболизма. Так, при подавлении процесса введения хлора микроорганизм S. аureofaciens образует тетрациклин, а не хлортетрациклин, при ингибировании реакции метилирования им синтезируется деметилированное производное хлортетрациклина.

· Использование для биосинтеза антибиотиков блокированных мутантов, у которых отсутствует (блокировано) определенное звено в цепи реакций, ведущих к синтезу антибиотика. Блокированные мутанты не способны образовывать нужный антибиотик. Используя низкую субстратную специфичность ферментов вторичного метаболизма и вводя аналоги предшественников антибиотика, последние переводят в аналоги самого антибиотика в ходе процесса, известного как мутационный биосинтез, или мутасинтез:

а) предполагаемая последовательность реакций, ведущая к синтезу антибиотика: А→Bфермент →C→D→E→антибиотик

б)отсутствие синтеза антибиотика у «блокированного мутанта»:

А→В фермент → C→D

в) синтез модифицированного антибиотика после введения аналога предшественника (D*): D*→ E*→модифицированный антибиотик

Принципы производства полусинтетических пенициллинов. Получение новых более эффективных аналогов пенициллина основано на изменении природы его ацильной группировки при сохранении в неизменном виде ядра пенициллина – 6-аминопенициллановой кислоты (6-АПК). В промышленности 6-АПК получают путем гидролиза природных пенициллинов с помощью специфического фермента ряда штаммов микроорганизмов – пенициллинацилазы. Ацилазы различают по их субстратной специфичности. Некоторые из ацилаз способны катализировать и обратные реакции – процессы ацилирования аминогруппы 6-АПК с образованием модифицированного пенициллина. Во многих случаях 6-АПК не выделяют из культуральной жидкости, например при превращении бензилпенициллина в ампициллин:

Бензилпенициллин гидролизуют ацилазой мутанта Kluyvera citrophila при рН 7,8 – 8,0 и температуре 40 – 50 °С. Затем в ферментатор вносят мутант Pseudomonas melanogenum и фенилглицин. Условия ферментации изменяют таким образом (рН 5,0 – 5,5), чтобы ацилаза второго мутантного организма осуществляла синтез ампициллина:

Замена ацильного остатка приводит к синтезу других полусинтетических антибиотиков

Технология промышленного получения антибиотиков. Биосинтез антибиотиков, как и любых других вторичных метаболитов, возрастает в фазе замедленного роста клеточной популяции (конец трофофазы) и достигает максимума в стационарной фазе (идиофазе). В конце трофофазы изменяется энзиматический статус клеток, появляются индукторы вторичного метаболизма, освобождающие гены вторичного метаболизма из-под влияния катаболитной репрессии. Поэтому любые механизмы, тормозящие клеточную пролиферацию и активный рост, стрессовые ситуации, активируют процесс образования антибиотиков.

Процесс культивирования идиолитов проходит две фазы (двустепенчатое культивирование). На первой фазе происходит накопление достаточного количества биомассы, которая выращивается на среде для роста микроорганизма. Эта фаза должна быть быстрой, а питательная среда дешевой. На второй фазе осуществляются запуск и активный синтез антибиотика. На этой фазе ферментацию ведут на продуктивной среде.

Образование антибиотиков регулируется условиями культивирования микроорганизмов. Поэтому оптимизация питательной среды является главным фактором в повышении выхода продукта.

Многие антибиотики берут свое начало от промежуточных соединений обмена первичных метаболитов, поэтому их биосинтез регулируется путем ретроингибирования. Так, биосинтез пенициллина культурой гриба Penicillium chrysogenum контролируется по принципу обратной связи L-лизином. Кроме ретроингибирования биосинтез многих антибиотиков тормозится высокими концентрациями своих же антибиотиков. Следует отметить, что в процессе эволюции микроорганизмы выработали механизмы защиты от действия собственных антибиотиков. Эта проблема успешно решается в результате использования иммобилизованных ферментов.

Большинство антибиотиков получают при глубинной аэробной ферментации периодического действия в асептических условиях. Период ферментации длится 7 – 10 суток. Технология завершающих стадий процесса определяется природой антибиотика, характером производства и целями даль­нейшего использования антибиотиков.

Для медицинских целей технология выделения и очистки имеет особое значение. Обычно она включает сложные многоступенчатые комбинации различных операций: экстракцию антибиотиков подходящими растворителями, осаждение и перекристаллизацию их из разных сред, фракционирование на ионообменных смолах, лиофильную и распылительную сушку готовых препаратов. Антибиотики выделяют или в виде сравнительно неочищенных препаратов (натриевая соль пенициллина), или в виде высокоочищенных веществ (прокаиновая соль пенициллина), предназначенных для клинического использования. Выход антибиотиков обычно составляет несколько десятков граммов на 1 л.

Все антибиотики проходят биологический и фармакологический контроль. Биологический контроль позволяет определить стерильность готового препарата. Для этого используют метод внесения инактивированного антибиотика в стерильную питательную среду. Фармакологический контроль включает в себя определение спектра действия, токсичности (острой и хронической), устанавливают максимально переносимую дозу (МПД), дозу, вызывающую 50 % гибели животных (LD 50) и дозу смертельную для всех животных (LD 100). После всестороннего изучения препарата может быть рекомендован к практическому применению.

Дата добавления: 2016-10-26; просмотров: 6303;

Похожие статьи:

министерство сельского хозяйства российской федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

высшего профессионального образования

«ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

Зооинженерный факультет

РЕФЕРАТ

На тему: Ферменты микроорганизмов

Выполнил:

Студент 243 группы

Ушков В.В.

Проверил: преподаватель

Шахова Е.В.

Ижевск, 2010 г.

Содержание

министерство сельского хозяйства российской федерации 1

Содержание 2

Введение 3

Биотехнологические производства с использованием ферментов микроорганизмов 5

1. Получение глюкозо-фруктозных сиропов 5

2. Получение L-аминокислот 7

3. Получение L-аспарагиновой кислоты 8

4. Получение L-яблочной кислоты 9

5. Получение безлактозного молока 10

6. Получение сахаров из молочной сыворотки 10

7. Получение 6-аминопенициллановой кислоты 12

ФЕРМЕНТАТИВНОЕ ПРЕВРАЩЕНИЕ ЦЕЛЛЮЛОЗЫ В САХАРА 13

Целлюлолитические микроорганизмы и ферменты 13

Выводы 15

Список литературы 16

Введение

Истоки современной биотехнологии уходят глубоко в прошлое. С незапамятных времен получали пищевые продукты и улучшали их качество с использованием биологических процессов и агентов. В качестве биологических агентов применялись различные организмы (от животных до микроорганизмов) На этом принципе основаны общеизвестные древнейшие способы получения молока, изготовления вин, уксуса, пивоварения, сыроделия, хлебопечения и т. д.

Хотя история пищевых технологий насчитывает тысячелетия, тем не менее совершенствование их постоянно продолжается. В последнее время наметились перспективы принципиального сдвига в технологии получения и улучшения качества пищевых продуктов. Это связано с переходом от использования целых биологических организмов на клеточный и молекулярный уровни. Появилась возможность конструировать биологические агенты, изменять структуру молекул, «резать» их на части и соединять по усмотрению исследователя-биотехнолога, извлекать биокатализаторы из естественного клеточного окружения и присоединять с помощью ковалентных или других связей к специальным носителям (тем самым опять-таки изменять структуру молекул) и т.д. В этом и заключается главное и принципиальное отличие традиционных пищевых технологий и их традиционного научного фундамента от современной биотехнологии. Следует, впрочем, иметь в виду, что четкую грань между технической биохимией и биотехнологией провести достаточно трудно.

Может возникнуть вопрос, почему в разделе, посвященном промышленным процессам инженерной энзимологии, речь идет в основном о получении пищевых продуктов. Дело в том, что иммобилизованные ферменты и клетки в основном используют в получении пищевых продуктов и в меньшей степени фармацевтических препаратов. Такое ограничение вызвано весьма малой доступностью (в широких масштабах) ферментов, способных катализировать реакции технологической значимости, на­пример, в органической или неорганической химии, нефтехимии, полимерной химии, фармацевтической промышленности и т. д. Напротив, традиционное использование растворимых ферментов в пищевой промышленности создало определенный фундамент для дальнейшего совершенствования методов в этой области.

Биотехнологические производства с использованием ферментов микроорганизмов

К настоящему времени семь процессов с использованием иммобилизованных ферментов или клеток нашли крупномасштаб­ное промышленное применение в ряде развитых стран мира:

1. Производство глюкозо-фруктозных сиропов и фруктозы из глюкозы.

2. Получение оптически активных L-аминокислот из их рацемических смесей.

3. Синтез L-аспарагиновой кислоты из фумаровой кислоты.

4. Синтез L-яблочной кислоты из фумаровой кислоты.

5. Производство диетического безлактозного молока.

6. Получение Сахаров из молочной сыворотки.

7. Полу­чение 6-аминопенициллановой кислоты (пенициллинового ядра) из обычного пенициллина (пенициллина G) для последующего производства полусинтетических антибиотиков пенициллинового яда.

1. Получение глюкозо-фруктозных сиропов

Фруктоза, или иначе фруктовый, плодовый или медовый сахар, широко распространена в природе. Особенно богаты ей
яблоки и помидоры, а также пчелиный мед, который почти наполовину состоит из фруктозы. По сравнению с обычным пищевым сахаром (в состав которого фруктоза также входит, но в виде химического соединения с менее сладкой глюкозой) фруктоза обладает более приятным вкусом, и согласно профессиональной терминологии вкус фруктозы «медовый», а обычного
сахара — «приторный». Она на 60—70% слаще сахара и потреблять ее можно меньше, а значит, меньше будет и калорийность продукта. Это важно с точки зрения диетологии питания. Фруктозу в отличие от глюкозы и пищевого сахара могут потреблять больные диабетом, так как замена сахара фруктозой существенно снижает вероятность возникновения диабета. Это объясняется тем, что усвоение фруктозы не связано с превращением
инсулина. Кроме того, она в меньшей степени вызывает заболевание зубов , чем сахар.В смеси с глюкозой фруктоза не кристаллизуется (не засахаривается), поэтому нашла широкое применение в производстве мороженого, кондитерских изделий и т. д. Несмотря на неоспоримые преимущества фруктозы по сравнению с обычным сахаром, вплоть до начала 70-х годов она не производилась промышленным путем. В 1973 г. американской компанией «Клинтон Корн» был внедрен в промышленность про­цесс превращения глюкозы во фруктозу под действием иммоби­лизованного фермента глюкозоизомеразы, этот процесс стал са­мым крупным в мире по сравнению с другими, в которых исполь­зуются иммобилизованные ферменты.

Основы процесса.

Фермент глюкозоизомераза катализирует превращение глюкозы, получаемой при гидролизе крахмала (кукурузного или реже картофельного), в смесь глюкозы и фруктозы. Образующийся глюкозо-фруктозный сироп содержит 42—43% фруктозы, около 51% глюкозы и не более 6% ди- или олигосахаридов, по сладости соответствует обычному сахару или инвертному сахару, получаемому кислотным (или ферментатив­ным) гидролизом сахарозы.

Для некоторых пищевых производств (например, безалко­гольных напитков типа кока-колы) употребляют глюкозо-фруктозные сиропы с содержанием фруктозы 55 и 90%. Их в свою очередь изготавливают из обычных (42%-ных по фруктозе) сиропов с использованием разделительных процессов типа жид­костной хроматографии.

Глюкозо-фруктозная смесь поступает на рынок в виде сиро­пов. Применяется при производстве тонизирующих и ацидофиль­ных напитков, мороженого, кондитерских изделий, хлеба, консер­вированных фруктов и т. д.

Технологические варианты процессов.

В литературе содер­жится немного данных о технологических деталях процессов. Несмотря на то, что почти в каждом процессе приме­няются ферменты или клетки различного происхождения, имеющие неодинаковую каталитическую активность и полученные различными методами иммобилизации, все процессы имеют об­щие черты.

2. Получение L-аминокислот

Аминокислоты — главный строительный материал организма, из которого формируются пептиды и белки. Растения и микро­организмы способны сами синтезировать все нужные им амино­кислоты из более простых химических соединений. Однако чело­веческий организм способен синтезировать лишь 12 из 20 амино­кислот, необходимых ему для жизнедеятельности. Остальные 8 аминокислот получили название незаменимых и должны по­ступать в организм извне — с пищей. При нехватке хотя бы од­ной из незаменимых аминокислот замедляется рост организма, проявляется патология. Поэтому важно синтезировать эти ами­нокислоты в промышленных масштабах для корректировки рационов питания, в лечебных и профилактических целях и т. д. Кроме того, аминокислоты (как заменимые, так и незаменимые) являются важнейшим сырьем для обеспечения многих биотехно­логических процессов.

Производство многих аминокислот, в том числе и незаме­нимых, —крупнотоннажная отрасль химической промышленности. Однако с помощью химических методов получается смесь опти­ческих изомеров аминокислот, иначе говоря, смесь L- и D- аминокислот, молекулы которых в L- и D-форме представляют собой зеркальные изомеры. В химических реакциях эти изомеры прак­тически неразличимы, однако человеческий организм усваивает лишь L-аминокислоты (за исключением метионина). Для боль­шинства биотехнологических процессов D- аминокислоты также не представляют ценности.

Разделение смеси L- и D- аминокислот, так называемой ра­цемической смеси, на составляющие их изомеры стало первым процессом в мире, осуществленным с помощью иммобилизован­ных ферментов на промышленном уровне. Этот процесс был реализован в Японии на предприятии, принадлежащем компании «Танабе Сейяку» в 1969 г. В течение 15 предшествующих лет данный процесс проводился с применением растворимого фермента аминоацилазы, но он был недостаточно экономичен. После перехода на иммобилизованную аминоацилазу экономическая эффективность процесса возросла в полтора раза, и в настоящее время компания осуществляет на промышленном уровне производство пяти L-аминокислот, из них четыре незаменимые (метионин, валин, фенилаланин, трипто­фан).

В качестве исходного вещества используются ацилированные D, L-аминокислоты, полученные с помощью обычного химиче­ского синтеза. Фермент аминоацилаза гидролизует один ацил-L-изомер, отщепляя от него объемную ацильную группу, и тем са­мым резко увеличивая растворимость образующейся L-амино­кислоты по сравнению с присутствующим в реакционной системе ацил-Д-изомером. После этого вещества легко отделяются друг от друга путем известных физико-химических методов. Так выделяется чистая L-аминокислота.

Остающаяся ацил-О-аминокислота при нагревании рацеми-зуется, т. е. переходит опять в смесь ацилированных D, L-амино­кислот, и процесс повторяют сначала. Таким образом, в итоге единственным продуктом является L-аминокислота. Оказалось, что для аминоацилазы не имеет значения, какую аминокислоту ей гидролизовать, важно лишь строение ацильной части, к кото­рой фермент имеет строгую специфичность. В результате этого одна и та же реакционная колонна с иммобилизованной амино-ацилазой может быть применена в производстве самых различ­ных L-аминокислот.

Иммобилизованный фермент легко готовить, так как он легко адсорбируется на специальной смоле, которую затем помещают в реакционную колонну. Время полуинактивации иммобилизо­ванного фермента в промышленных условиях составляет 65 сут. Когда активность катализатора падает ниже нормы, в колонну добавляют раствор свежего фермента (раз в несколько месяцев), который опять адсорбируется на носителе. Устойчивость поли­мерного носителя высокая; так, на предприятии японской ком­пании «Танабе Сейяку» он используется более 8 лет в одной и той же колонне без замены (I. Chibata, 1978).

3. Получение L-аспарагиновой кислоты

Аспарагиновая кислота не принадлежит к числу незаменимых, но производится в мире многими тысячами тонн. Она находит широкое применение в пищевой промышленности для придания (в сочетании с другой аминокислотой — глицином) кондитерским изделиям и напиткам различных оттенков кислого или сладкого вкуса. Аспарагиновую кислоту можно получать с помощью фермента аспартазы. В качестве исходных веществ для фермен­тативного синтеза используются фумаровая кислота и аммиак — крупнотоннажные продукты органического и неорганического синтеза. Протекающая реакция одностадийна — в присутствии фермента молекула аммиака присоединяется к фумаровой кисло­те по месту двойной связи с образованием оптически активной L-аспарагиновой кислоты. В этом процессе впервые в техноло­гической практике были применены иммобилизованные клетки микроорганизма, содержащие фермент в его естественной мик­робной оболочке. Этот процесс был разработан японской фир­мой «Танабе Сейяку» в 1973 г.

Плотный гель с иммобилизованными в нем микробными клетками, содержащими аспартазу, формуют в кубики разме­рами 2—3 мм, набивают ими колонну объемом 1 м3 и пропускают через нее раствор фумарата аммония. На выходе из колонны L-аспарагиновую кислоту кристаллизуют, центрифугируют и про­мывают холодной водой. Процесс практически полностью автома­тизирован и осуществляется в непрерывном режиме. Масштабы производства на фирме «Танабе Сейяку»—1700 кг чистой L-аспарагиновой кислоты в сутки на реактор объемом 1 м3 .

4. Получение L-яблочной кислоты

Яблочная кислота находит спрос в качестве заменителя лимонной кислоты в продуктах питания и фармацевтических препаратах. Химическим путем (гидролизом ангидрида яблочной кислоты) производят только рацемическую смесь оптических изомеров яблочной кислоты, в то время как оптически активный L-изомер, получаемый микробиологическим способом, пока слиш­ком дорог для промышленного производства.

L-яблочную кислоту получают ферментативным путем, так же как и L-аспарагиновую кислоту, из фумаровой кислоты. Здесь в качестве катализатора используют иммобилизованные в гель клетки, содержащие фермент фумаразу. В присутствии этого фермента происходит присоединение воды по двойной связи молекулы фумаровой кислоты. В остальном реакция протекает так, как и в случае L-аспарагиновой кислоты. В обычных (интактных) клетках время полуинактивации фумаразы составляет 6 сут, в иммобилизованных в полиакриламидный гель — 55 сут, а в иммобилизованных в гель на основе каррагинана — поли­сахарида из морских водорослей—160 сут

5. Получение безлактозного молока

Лактоза, или молочный сахар, содержится в достаточно боль­ших количествах в молоке и молочной сыворотке. Этот сахар характеризуется малой сладостью и низкой растворимостью, в его присутствии происходит кристаллизация мороженого и дру­гих молочных изделий и продуктов, что является причиной не­приятных вкусовых ощущений.

Молекулы лактозы распадаются на глюкозу и галактозу при гидролизе под действием лактазы, или β-галактозидазы. Молоко после такой обработки приобретает новые диетические качества, поскольку определенная часть населения не может употреблять молоко из-за наличия в нем лактозы. Это свойство организма получило название лактазной недостаточности.

Первый промышленный процесс получения безлактозного молока с использованием иммобилизованной лактазы был осу­ществлен итальянской фирмой «Сентрале дель Латте» в Милане. Получаемое диетическое молоко несколько слаще по сравнению с обычным, поскольку глюкоза более сладкая, чем лактоза, однако это не мешает его употреблению. Стабильность иммоби­лизованного фермента достаточно высока, и после 50 сут работы он сохраняет 80% первоначальной активности.

6. Получение сахаров из молочной сыворотки

Молочная сыворотка содержит в своем составе большое количество лактозы — около 5% в жидкой и 75% в высушенной сыворотке. Ферментативный гидролиз лактозы в сыворотке открывает новые возможности получения сахаристых веществ из нетрадиционного сырья, вносит определенный вклад в решение кормовой проблемы и в проблему охраны окружающей среды, поскольку сыворотка большей частью не утилизуется. Первый промышленный процесс гидролиза лактозы в молочной сыворотке с помощью иммобилизованной лактазы был реализован в 1980 г. совместно английской, французской и американской компаниями одновременно в Англии и Франции.

Перед введением в колонный реактор с иммобилизованным ферментом сыворотку пастеризуют, подвергают ультрафильтра­ции и пропускают через ионообменник, чем добиваются ее деми­нерализации. Мощность установки составляет около 1000 л при степени конверсии лактозы 80%. Установка полностью автомати­зирована. Получаемые при этом сахара (глюкоза и галактоза) по сладости в полтора раза превышают сладость пищевого сахара в расчете на одинаковые экономические затраты.

По данным итальянской компании «Снам Проджетти», про­должительность работы иммобилизованного фермента в реакторе с молочной сывороткой существенно зависит от качества сы­воротки и время полуинактивации фермента изменяется от 60 (при обработке депротеинизованной и деминерализованной сы­воротки) до 8 сут (для необработанной кислой сыворотки), о связи с этим в промышленных условиях ежедневно по полчаса производят очистку колонны (с иммобилизованной лактазой) Разбавленной уксусной кислотой. Время работы подобной систе­мы в лабораторных условиях составляет около двух лет

7. Получение 6-аминопенициллановой кислоты

Проведение химического деацилирования бензилпенициллина, обычно являющегося исходным сырьем для получения 6-амино­пенициллановой кислоты (6-АПК), представляет трудную задачу из-за наличия в его молекуле чрезвычайно лабильного β-лактамного кольца. Поэтому в промышленности до недавнего времени обрабатывали бензилпенициллин бактери­альной массой Е. coliсодержащей фермент пенициллинамидазу, который специфически и без побочных реакций расщеплял имен­но ту амидную связь, которая необходима для образования 6-АПК.

В результате применения иммобилизованных бактериальных клеток, содержащих пенициллинамидазу, а затем и самой иммо­билизованной пенициллинамидазы, удалось значительно повы­сить продуктивность и экономичность промышленного процесса получения 6-АПК. В 1975 г. процесс получения 6-АПК с исполь­зованием иммобилизованной пенициллинамидазы был внедрен в нашей стране. В настоящее время значительная доля 6-АПК в Италии и вся 6-АПК, выпускаемая в РФ, производится с помощью иммобилизованных ферментов.

Итальянская компания использует иммобилизованную пени­циллинамидазу, полученную включением фермента в волокна триацетата целлюлозы. При этом эмульсию, образованную при смешивании раствора фермента с раствором триацетата целлю­лозы в метиленхлориде, подвергают экструзии в нити. Волокна закрепляют вдоль термостатируемой колонны и пропускают через нее 6%-ный раствор бензилпенициллина до степени конверсии последнего 97% или выше. По данным итальянских ученых, общий выход 6-АПК составляет 85% с чистотой 96% и выше.

По технологии компании «Танабе Сейяку», использующей бактериальные клетки, иммобилизованные в полиакриламидный гель (с временем полуинактивации 42 сут при 30°С или 17 сут при 40°С), общий выход 6-АПК составляет около 80%. На советском производстве употребляют пенициллин­амидазу, иммобилизованную в полиакриламидном геле, модифи­цированном глутаровым альдегидом.

ФЕРМЕНТАТИВНОЕ ПРЕВРАЩЕНИЕ ЦЕЛЛЮЛОЗЫ В САХАРА

Целлюлоза построена из звеньев D-глюкозы, которые соеди­нены 1-4-β-глюкозидными связями (по типу «голова к хвосту») в длинные, вплоть до тысяч глюкозных единиц, цепи, уложенные в плотную упаковку со своеобразной кристаллической структу­рой. Прочность упаковки обусловлена главным образом тем, что цепи поперечно «прошиты» водородными связями, которые по отдельности относительно слабы, но в совокупности с тыся­чами других образуют, можно сказать, монолитный блок. В ре­зультате целлюлоза не только нерастворима в воде, но ее кри­сталлические участки непроницаемы практически для любых химических агентов, в том числе и для сильных кислот. Но там, где плотная упаковка глюкозных цепей нарушена (на поверх­ности целлюлозы, в местах поворота цепей, а также после спе­циальной обработки целлюлозы, например с помощью интенсив­ного измельчения), образуются «аморфные области», куда могут проникать и растворители, и механические агенты. Это свойство используется при промышленном получении так называемой микрокристаллической целлюлозы, которая широко применяется для специальных химических целей. Природную целлюлозу обра­батывают кислотой, аморфные участки легко расщепляются и уходят в раствор, оставляя мелкие микрокристаллиты, чрезвы­чайно стойкие к химическим реагентам.

Целлюлолитические микроорганизмы и ферменты

В природе имеются так называемые целлюлолитические микро­организмы, содержащие набор ферментов — целлюлаз, способных к расщеплению не только аморфной, но и кристаллической цел­люлозы до глюкозы. Попадая на поверхность целлюлозосодержащего материала и прикрепляясь к ней, микроорганизм выделя­ет целлюлазы, под действием которых субстрат целлюлаза в непосредственной близости от грибка-паразита расщепляется до конечного продукта — глюкозы. Микроорганизм поглощает глюкозу в качестве основного продукта питания, размножается, рас­тет, захватывая все большие участки поверхности, выбрасывает все новые и новые порции ферментов, пока не истощится доступ­ная целлюлоза.

Однако эти процессы протекают весьма медленно. Для того чтобы пень в лесу полностью сгнил, нужны годы. Если же от­делить от микроорганизма ферменты целлюлазы, сконцентриро­вать их и добавить к целлюлозе, процесс значительно ускорится. При этом образующаяся глюкоза не потребляется грибками, а накапливается в реакционной смеси. Кроме того, если в качестве субстрата использовать не чистую целлюлозу, а целлюлозосодержащие отходы промышленности или сельского хозяйства, то можно решить и еще одну важную проблему — утилизацию отходов. Полученная глюкоза в зависимости от ее чистоты и экономической эффективности процесса может найти применение в медицине, пищевой промышленности, тонкой химической тех­нологии или технической микробиологии. Глюкозу, как известно, можно сбраживать в этанол и затем употреблять как «жидкое топливо» в качестве заменителя части нефтепродуктов. Наконец, дегидратация энатола дает этилен — основу современной «боль­шой химии».

Целлюлоза на нашей планете — самое «крупнотоннажное» из всех возобновляемых видов сырья. Ежегодный естественный прирост целлюлозы составляет около 100 млрд. т. Использование человеком части этого сырья приводит к накоплению значительного количества целлюлозосодержащих отходов. Если даже малую долю этих отходов превращать фер­ментативным путем в полезные продукты, это даст ощутимый (и возобновляемый!) источник пищевых углеводов и заменителей нефти. Поэтому данной проблемой в последние годы столь упор­но занимаются и исследователи, и технологи всего мира.

Выводы

Благодаря высокой скорости роста, сравнительно простому строению клеток и несложной структуре генетического аппарата бактерии стали од­ним из наиболее удобных объектов в биохимических исследованиях низ­ших организмов. Многие бактериальные культуры хорошо известны как активные продуценты внеклеточных гидролаз и применяются при про­мышленном получении ферментов. Практическое использование бактери­альных ферментов в значительной степени способствовало интенсификации исследований по изучению условий их продуцирования, а также локализа­ции.

Список литературы

  1. Безбородов А.М., Астапович Н.И. Секреция ферментов у микроорганизмов. – М.: 1984 г.

  2. Биотехнология: Учебное пособие для ВУЗов в 8 кн./ под ред. Н.С. Егорова, В.Д. Самуилова. Кн. 7: Иммобилизованные ферменты. – М.: 1987 г.

  3. Биотехнология: Учебное пособие для ВУЗов в 8 кн./ под ред. Н.С. Егорова, В.Д. Самуилова. Кн. 8: Инженерная энзимология. – М.: 1987 г.

  4. В.М. Богданов, Р.С. Баширова и др. Техническая микробиология пищевых продуктов. – М.: 1968 г.

  5. С. Прескотт, С. Дэнс Техническая микробиология. – М.: 1952 г.

Ферменты — это высокомолекулярные вещества белковой природы, активность которых зависит от состава и последовательности аминокислот. Поэтому промышленное их получение химическим синтезом в больших объемах не всегда возможно и желательно. Как правило, ферменты производят с помощью микроорганизмов или экстрагируют из растительных и животных клеток. Особенно много выпускают протеаз, глюкоамилаз, а-амилаз и глюкозоизомераз. Микроорганизмы синтезируют большой спектр энзимов, а потому все активнее заменяют растительные и животные ферменты: амилазы грибов и бактерий вытеснили аналогичные ферменты солода и ячменя в пивоварении и хлебопечении; протеазы из аспергилловых грибов — животные и растительные протеазы из Bacillus licheniformis, используемые для размягчения мяса, заменили панкреатические протеазы в процессе дубления кожи и производстве моющих средств; реннин из Mucor успешно используется в сыроварении вместо сычужного фермента. В табл. 2.4 представлены наиболее часто встречающиеся продуценты ферментов.

Название

фермента

Источник фермента

Химический и биотехнологический процессы. Область использования .

Амилазы

Бактерии, грибы

Bacillus spp.,

Aspergillus orizae

Aspergillus niger

Гидролиз крахмала до мальтозы, декстринов и глюкозы. Спиртовая, пивоваренная промышленность, получение патоки и глюкозы

Глюкоизомера-за

Более 80 видов микроорганизмов

(Bacillus, Streptomyces)

Изомеризация Д-глюкозы в Д-фруктозу. Кондитерская, ликероводочная, безалкогольная промышленность.

Липазы

Candida lipolytica,

Saccharomyces lipolytica,

Aspergillus spp

Гидролиз жиров и масел. Пищевая, легкая, медицинская промышленность, коммунальное хозяйство, бытовая химия

Пектиназа

Aspergillus spp., Penicillium spp.

Гидролиз галактуронана, осветление вина и фруктовых соков

Пептидогидро-лазы

Bacillus spp.,

Aspergillus spp.,

Penicillium spp.,

Streptomyces spp.

Лизис белка. Получение аминокислот, производство и получение сыра, мягчение мясных и рыбных изделий, выделка кожи. Пищевая промышленность, медицина, сельское хозяйство

Целлюлазы

Clostridium spp., Alternaria tenuis, Aspergillus orizae

Гидролиз целлюлозы до глюкозы. Производство пищевых и кормовых белковых препаратов, глюкозо-фруктозных сиропов.

Типовые схемы получения ферментов включают:

1. Получение активных продуцентов (музейной культуры) и под-держание их в активном состоянии. Состав и количество ферментов, синтезируемых клетками микроорганизма, определяется его генотипом. Однако ген как структурная единица ДНК под влиянием различных факторов внешней среды, направленного действия мутагенов способен изменяться, что создает возможность совершенствования старых продуцентов и создания новых со способностью к сверхсинтезу целевых ферментов. Многочисленные пересевы (пассажи) приводят к снижению активности, поэтому раз в два года делается рассев моноколоний для выделения наиболее активной.

2. Получение посевного материала (ПМ). Объем посевного материала зависит от физиологических особенностей продуцента и достигается постадийно: ЧК (в пробирках) —> маточная культура (в колбах) -посевная культура (в инокуляторе) —> производственная посевная культура (в аппарате чистой культуры — АЧК). Выращивают посевной материал как глубинным, так и поверхностными способами. В последнем случае объем наращивают аналогично: пробирка -> колба —> кювета.

Вид посевного материала зависит от продуцента: для грибов и актиномицетов это мицелиальная вегетативная масса или споровый инокулят, для бактерий — молодая растущая культура на начальной стадии спорообразования. Нецелесообразно использовать слишком молодые клетки, так как производственный процесс в этом случае затягивается, или старую культуру, так как не полностью утилизируется субстрат.

Выбор условий его получения включает два этапа: качественный отбор необходимых компонентов среды и определение максимального количественного соотношения отобранных компонентов.